Keysight HMMC-2007

 DC-8 GHz Terminated SPDT Switch 1GG7-8004

Data Sheet

Features

- Outputs terminated in 50Ω when off
- Frequency range: DC to 8 GHz
- Insertion loss: 1.2 dB @ 8 GHz
- Isolation:
$>70 \mathrm{~dB}$ @ 45 MHz
> 35 dB @ 8 GHz
- Return loss: 25 dB (both input and selected output)
18 dB unselected output
- Switching speed:
< $20 \mu \mathrm{~s}$ (10\%-90\% RF)
- $P_{-1 d B}: 27 \mathrm{dBm}$
- Harmonics (DC coupled):
<-80 dBc @ 10 dBm

Description

The HMMC-2007 is a GaAs monolithic microwave integrated circuit (MMIC) designed for low insertion loss and high isolation from DC to 8 GHz . It is intended for use as a general-purpose, single-pole, double-throw (SP-DT), absorptive switch. Two series and two shunt MESFETs per throw provide 1.4 dB maximum insertion loss and 38 dB typical isolation at 6 GHz . HMMC-2007 chips use through-substrate vias to provide ground connections to the chip backside and minimize the number of wire bonds required.

Absolute Maximum Ratings ${ }^{1}$

Symbol	Parameters/conditions	Minimum	Maximum	Units
$V_{\text {set }}$	Select voltages 1 \& 2	-10.5	+10.5	Volts
$P_{\text {in }}$	RF input power		27	dBm
$T_{\text {op }}$	Operating temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {st }}$	Storage temperature	-65	+165	${ }^{\circ} \mathrm{C}$
$T_{\text {max }}$	Maximum assembly temperature		+200	${ }^{\circ} \mathrm{C}$
$T_{\text {unsel }}$	Power into unselected output		27	dBm

1. Operation in excess of any one of these ratings may result in permanent damage to this device.
$T_{A}=25^{\circ} \mathrm{C}$ except for $T_{\text {op }}, T_{\text {st }}$, and $T_{\text {max }}$.

Chip size:
$660 \times 960 \mu \mathrm{~m}$ (25.9×37.8 mils)
Chip size tolerance: $\pm 10 \mu \mathrm{~m}(\pm 0.4$ mils)
Chip thickness:
$127 \pm 15 \mu \mathrm{~m}$ (5.0 ± 0.6 mils)
Pad dimensions: $120 \times 120 \mu \mathrm{~m}$ (4.7×4.7 mils)

DC Specifications/Physical Properties
($T_{A}=25^{\circ} \mathrm{C}$)

Symbol	Parameters/conditions	Typ	Min	Max	Units
$\mathrm{I}_{\text {SEL - } 10 \mathrm{~V}}$	Leakage current @ -10 V			200	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SEL +10 }} \mathrm{V}$	Leakage current @ +10 V			20	$\mu \mathrm{A}$
V_{P}	$\begin{aligned} & \text { Pinch-off voltage }\left(V_{\text {SEL2 }}=V_{p}, V_{\text {RFout2 }}=+2 \mathrm{~V},\right. \\ & I_{\text {RFout2 } 2}=4 \mathrm{~mA}, \mathrm{~V}_{\text {SEL1 }}=-10 \mathrm{~V}, \mathrm{~V}_{\text {RFout1 }}=\text { open circuit, } \\ & \left.V_{\text {RFin }}=G N D\right) \end{aligned}$		-6.75	-3.00	Volts
BV	Breakdown voltage (test FET w/ $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=\mathrm{GND}$, $I_{G}=-50 \mu \mathrm{~A}$)			-13.0	Volts

RF Specifications

$\left(T_{A}=25^{\circ} \mathrm{C}, Z_{0}=50 \Omega, V_{\text {sel-high }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {sel-low }}=-10 \mathrm{~V}\right)$

Symbol	Parameters/conditions	Typ	Min	Max	Units
BW	Guaranteed operating bandwidth		DC	8.0	GHz
IL	Insertion loss, $\mathrm{RF}_{\text {in }}$ to selected $\mathrm{RF}_{\text {out }}$ (on throw), 6 GHz	1.1		1.4	dB
ISO	Isolation, $\mathrm{RF}_{\text {in }}$ to unselected $\mathrm{RF}_{\text {out }}$ (off throw), 6 GHz	38			dB
$R L_{\text {in }}$	Input return loss @ 6GHz	25			dB
$\mathrm{RL}_{\text {out ON }}$	Output return loss, on throw @ 6 GHz	25			dB
RL ${ }_{\text {out OFF }}$	Output return loss, off throw @ 6 GHz	18			dB
P-1 dB	Input power where IL increases by 1 dB , $\mathrm{f}_{\text {in }}=2 \mathrm{GHz}$	27			dBm
$\mathrm{t}_{\text {s }}$	Switching speed, 10\%-90\% RF envelope, $\mathrm{f}_{\text {in }}=2 \mathrm{GHz}$	20			$\mu \mathrm{S}$

Applications

The HMMC-2007 can be used in instrumentation, communications, radar, ECM, EW, and many other systems requiring SPDT switching. It can be used for pulse modulation, port isolation, transfer switching, high-speed switching, replacement of mechanical switches, and so on.

Assembly Techniques

GaAs MMICs are ESD sensitive. ESD preventive measures must be employed in all aspects of storage, handling, and assembly.

MMIC ESD precautions, handling considerations, die attach and bonding methods are critical factors in successful GaAs MMIC performance and reliability.

GaAs MMIC ESD, Die Attach and Bonding Guidelines, Application Note (5991-3484EN) provides basic information on these subjects.

Additional References

FET Switch Speed and Settling Time, Application Note (5991-3516EN)
S-Parameters ${ }^{1}$
$\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~V}_{\text {sel }}\right.$ high $=+10 \mathrm{~V}, \mathrm{~V}_{\text {sel }}$ low $\left.=-10 \mathrm{~V}\right)$

Frequency	S_{11}			S_{21} (insertion loss)			S_{31}	S_{22} (0N throw)			S_{33} (OFF throw)		
	dB	mag	ang	dB	mag	ang	dB	dB	mag	ang	dB	mag	ang
0.5	-26.41	0.048	-57.11	-1.08	0.88	-49.06	-67.74	-28.40	0.03	-47.94	-32.26	0.024	47.18
1.0	-27.53	0.042	-113.83	-1.13	0.88	-93.69	-60.55	-24.74	0.05	-117.54	-30.79	0.029	-38.11
1.5	-30.69	0.029	-176.73	-1.18	0.87	-138.08	-56.17	-31.91	0.02	168.76	-30.35	0.030	-64.68
2.0	-32.37	0.024	115.57	-1.21	0.87	177.39	-53.18	-31.31	0.02	119.22	-26.21	0.049	-134.70
2.5	-31.79	0.026	61.35	-1.25	0.87	133.00	-50.38	-28.90	0.03	68.41	-26.38	0.048	151.66
3.0	-30.60	0.030	4.27	-1.30	0.86	88.53	-47.63	-32.95	0.02	-11.68	-25.66	0.052	103.24
3.5	-28.53	0.037	-58.32	-1.33	0.86	44.08	-45.67	-29.26	0.03	-44.21	-22.99	0.071	38.61
4.0	-27.14	0.044	-124.01	-1.34	0.86	-0.53	-44.12	-30.61	0.02	-113.40	-22.41	0.076	-21.25
4.5	-26.46	0.048	172.69	-1.37	0.85	-45.16	-42.68	-32.21	0.02	165.53	-21.68	0.082	-75.25
5.0	-27.03	0.045	107.19	-1.40	0.85	-89.79	-41.45	-36.49	0.01	141.98	-19.88	0.101	-133.81
5.5	-28.64	0.037	32.44	-1.42	0.85	-134.56	-40.28	-34.51	0.01	4.26	19.89	0.101	167.02
6.0	-29.55	0.033	-59.18	-1.45	0.85	-179.46	-39.16	-32.44	0.02	-100.27	-19.03	0.112	115.49
6.5	-26.88	0.045	-156.32	-1.51	0.84	135.54	-38.12	-27.18	0.04	176.54	-18.28	0.122	56.80
7.0	-23.24	0.069	130.95	-1.56	0.84	90.76	-37.13	-23.83	0.06	122.00	-18.67	0.117	-2.63
7.5	-21.53	0.084	70.91	-1.52	0.84	46.04	-36.36	-21.48	0.08	51.31	-18.61	0.117	-60.32
8.0	-21.21	0.087	15.06	-1.62	0.83	0.47	-35.64	-21.73	0.08	-15.06	-17.65	0.131	-124.25
8.5	-20.92	0.090	-41.26	-1.64	0.83	-44.44	-34.83	-22.22	0.07	-81.88	-16.95	0.142	172.46
9.0	-19.88	0.101	-104.30	-1.66	0.83	-90.23	-34.13	-20.42	0.09	-145.01	-16.07	0.157	115.03
9.5	-18.65	0.117	-175.05	-1.84	0.81	-135.81	-33.62	-18.17	0.12	145.14	-14.94	0.179	59.82
10.0	-17.04	0.141	116.96	-1.90	0.80	179.24	-34.14	-16.31	0.15	85.15	-14.31	0.193	3.39

[^0]

Select line		RF path	
SEL1	SEL2	RF IN to RF OUT2	RF IN to RF OUT1
+10 V	-10 V	Isolated	Low loss
-10 V	+10 V	Low loss	Isolated

Figure 1. Schematic

Figure 2. Recommended operating conditions ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Figure 3. Insertion loss ${ }^{1}$

Figure 5. Input return loss ${ }^{1}$

Figure 4. Input-to-output isolation

Figure 6. Output return loss ${ }^{1}$

Note: All compression data measured on individual device mounted in an Keysight 83040 Series Modular Microcircuit Package @ $T_{\text {case }}=25^{\circ} \mathrm{C}$.

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other Keysight Technologies, Inc GaAs ICs, for their design should obtain the current production specifications from Keysight. In this data sheet the term typical refers to the 50th percentile performance.
For additional information contact Keysight MMIC_Helpline@keysight.com.

myKeysight

myKeysight

www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.
Three-Year Warranty
www.keysight.com/find/ThreeYearWarranty
Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans
 www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.
www.keysight.com/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2008
Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas	
Canada	(877) 8944414
Brazil	551133517010
Mexico	0018002542440
United States	$(800) 8294444$
Asia Pacific	
Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	0120 (421) 345
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 63758100$
Europe \& Middle East	
Austria	0800001122
Belgium	080058580
Finland	0800523252
France	0805980333
Germany	08006270999
Ireland	1800832700
Israel	1809343051
Italy	800599100
Luxembourg	+3280058580
Netherlands	08000233200
Russia	88005009286
Spain	0800000154
Sweden	0200882255
Switzerland	0800805353
	$0 p t .1$ (DE)
	$0 p t .2$ (FR)
Opt. 3 (IT)	
United Kingdom	08000260637

For other unlisted countries: www.keysight.com/find/contactus (BP-07-01-14)

This information is subject to change without notice.
© Keysight Technologies, 2013-2014
Published in USA, August 3, 2014
5989-6203EN
www.keysight.com

[^0]: 1. Three-port wafer-probed data: Port $1=R F$ input, Port 2 = selected RF output (i.e., ON throw), and Port 3 = unselected RF output (i.e., OFF throw)
