Keysight HMMC-2007 DC-8 GHz Terminated SPDT Switch 1GG7-8004

Data Sheet

Features

- Outputs terminated in 50 Ω when off
- Frequency range: DC to 8 GHz
- Insertion loss: 1.2 dB @ 8 GHz
- Isolation:
 - > 70 dB @ 45 MHz
 - > 35 dB @ 8 GHz
- Return loss: 25 dB (both input and selected output) 18 dB unselected output
- Switching speed: < 20 µs (10%–90% RF)
- P_{-1 dB}: 27 dBm
 Harmonics (DC coupled):
 - < -80 dBc @ 10 dBm

Description

The HMMC-2007 is a GaAs monolithic microwave integrated circuit (MMIC) designed for low insertion loss and high isolation from DC to 8 GHz. It is intended for use as a general-purpose, single-pole, double-throw (SP-DT), absorptive switch. Two series and two shunt MESFETs per throw provide 1.4 dB maximum insertion loss and 38 dB typical isolation at 6 GHz. HMMC-2007 chips use through-substrate vias to provide ground connections to the chip backside and minimize the number of wire bonds required.

Chip size:

660 x 960 μm (25.9 x 37.8 mils) Chip size tolerance: ±10 μm (±0.4 mils) Chip thickness: 127 ± 15 μm (5.0 ± 0.6 mils) Pad dimensions: 120 x 120 μm (4.7 x 4.7 mils)

Absolute Maximum Ratings¹

Symbol	Parameters/conditions	Minimum	Maximum	Units
V _{set}	Select voltages 1 & 2	-10.5	+10.5	Volts
P _{in}	RF input power		27	dBm
T _{op}	Operating temperature	-55	+125	°C
T _{st}	Storage temperature	-65	+165	°C
T _{max}	Maximum assembly temperature		+200	°C
T _{unsel}	Power into unselected output		27	dBm

1. Operation in excess of any one of these ratings may result in permanent damage to this device. $T_A = 25$ °C except for T_{op} , T_{st} , and T_{max} .

DC Specifications/Physical Properties $(T_A = 25 \text{ °C})$

Symbol	Parameters/conditions	Тур	Min	Мах	Units
I _{SEL-10 V}	Leakage current @ –10 V			200	μΑ
I _{SEL +10 V}	Leakage current @ +10 V			20	μΑ
V _P	Pinch-off voltage ($V_{SEL2} = V_p$, $V_{RFout2} = +2$ V, $I_{RFout2} = 4$ mA, $V_{SEL1} = -10$ V, $V_{RFout1} =$ open circuit, $V_{RFin} =$ GND)		-6.75	-3.00	Volts
BV	Breakdown voltage (test FET w/ V _D = V _S = GND, $I_{\rm G}$ = –50 μ A)			-13.0	Volts

RF Specifications ($T_A = 25 \text{ °C}, Z_0 = 50 \Omega, V_{sel-high} = +10 V, V_{sel-low} = -10 V$)

Symbol	Parameters/conditions	Тур	Min	Мах	Units
BW	Guaranteed operating bandwidth		DC	8.0	GHz
IL	Insertion loss, ${\rm RF}_{\rm in}$ to selected ${\rm RF}_{\rm out}$ (on throw), 6 GHz	1.1		1.4	dB
ISO	Isolation, ${\sf RF}_{\sf in}$ to unselected ${\sf RF}_{\sf out}$ (off throw), 6 GHz	38			dB
RL _{in}	Input return loss @ 6 GHz	25			dB
RL _{out ON}	Output return loss, on throw @ 6 GHz	25			dB
$RL_{out\;OFF}$	Output return loss, off throw @ 6 GHz	18			dB
P–1 dB	Input power where IL increases by 1 dB, $\rm f_{in}$ = 2 GHz	27			dBm
t _s	Switching speed, 10%-90% RF envelope, $f_{in} = 2 \text{ GHz}$	20			μs

Applications

The HMMC-2007 can be used in instrumentation, communications, radar, ECM, EW, and many other systems requiring SPDT switching. It can be used for pulse modulation, port isolation, transfer switching, high-speed switching, replacement of mechanical switches, and so on.

Assembly Techniques

GaAs MMICs are ESD sensitive. ESD preventive measures must be employed in all aspects of storage, handling, and assembly.

MMIC ESD precautions, handling considerations, die attach and bonding methods are critical factors in successful GaAs MMIC performance and reliability.

GaAs MMIC ESD, Die Attach and Bonding Guidelines, Application Note (5991-3484EN) provides basic information on these subjects.

Additional References

FET Switch Speed and Settling Time, Application Note (5991-3516EN)

S-Parameters¹

 $(T_A = 25 \text{ °C}, Z_0 = 50 \Omega, V_{sel} \text{ high} = +10 \text{ V}, V_{sel} \text{ low} = -10 \text{ V})$

Frequency (GHz)		S ₁₁		\$ ₂₁	(insertior	n loss)	S ₃₁ (isolation)	S2	₂₂ (ON thi	row)	Sg	₃ (OFF thi	ow)
	dB	mag	ang	dB	mag	ang	dB	dB	mag	ang	dB	mag	ang
0.5	-26.41	0.048	-57.11	-1.08	0.88	-49.06	-67.74	-28.40	0.03	-47.94	-32.26	0.024	47.18
1.0	-27.53	0.042	-113.83	-1.13	0.88	-93.69	-60.55	-24.74	0.05	-117.54	-30.79	0.029	-38.11
1.5	-30.69	0.029	-176.73	-1.18	0.87	-138.08	-56.17	-31.91	0.02	168.76	-30.35	0.030	-64.68
2.0	-32.37	0.024	115.57	-1.21	0.87	177.39	-53.18	-31.31	0.02	119.22	-26.21	0.049	-134.70
2.5	-31.79	0.026	61.35	-1.25	0.87	133.00	-50.38	-28.90	0.03	68.41	-26.38	0.048	151.66
3.0	-30.60	0.030	4.27	-1.30	0.86	88.53	-47.63	-32.95	0.02	-11.68	-25.66	0.052	103.24
3.5	-28.53	0.037	-58.32	-1.33	0.86	44.08	-45.67	-29.26	0.03	-44.21	-22.99	0.071	38.61
4.0	-27.14	0.044	-124.01	-1.34	0.86	-0.53	-44.12	-30.61	0.02	-113.40	-22.41	0.076	-21.25
4.5	-26.46	0.048	172.69	-1.37	0.85	-45.16	-42.68	-32.21	0.02	165.53	-21.68	0.082	-75.25
5.0	-27.03	0.045	107.19	-1.40	0.85	-89.79	-41.45	-36.49	0.01	141.98	-19.88	0.101	-133.81
5.5	-28.64	0.037	32.44	-1.42	0.85	-134.56	-40.28	-34.51	0.01	4.26	19.89	0.101	167.02
6.0	-29.55	0.033	-59.18	-1.45	0.85	-179.46	-39.16	-32.44	0.02	-100.27	-19.03	0.112	115.49
6.5	-26.88	0.045	-156.32	-1.51	0.84	135.54	-38.12	-27.18	0.04	176.54	-18.28	0.122	56.80
7.0	-23.24	0.069	130.95	-1.56	0.84	90.76	-37.13	-23.83	0.06	122.00	-18.67	0.117	-2.63
7.5	-21.53	0.084	70.91	-1.52	0.84	46.04	-36.36	-21.48	0.08	51.31	-18.61	0.117	-60.32
8.0	-21.21	0.087	15.06	-1.62	0.83	0.47	-35.64	-21.73	0.08	-15.06	-17.65	0.131	-124.25
8.5	-20.92	0.090	-41.26	-1.64	0.83	-44.44	-34.83	-22.22	0.07	-81.88	-16.95	0.142	172.46
9.0	-19.88	0.101	-104.30	-1.66	0.83	-90.23	-34.13	-20.42	0.09	-145.01	-16.07	0.157	115.03
9.5	-18.65	0.117	-175.05	-1.84	0.81	-135.81	-33.62	-18.17	0.12	145.14	-14.94	0.179	59.82
10.0	-17.04	0.141	116.96	-1.90	0.80	179.24	-34.14	-16.31	0.15	85.15	-14.31	0.193	3.39

1. Three-port wafer-probed data: Port 1 = RF input, Port 2 = selected RF output (i.e., ON throw), and Port 3 = unselected RF output (i.e., OFF throw)

Figure	1.	Schematic
--------	----	-----------

Figure 2. Recommended	operating	conditions
(T _A = 25 °C)		

Select line		RF path	
SEL1	SEL2	RF IN to RF OUT2	RF IN to RF OUT1
+10 V	–10 V	Isolated	Low loss
–10 V	+10 V	Low loss	Isolated

Figure 3. Insertion loss¹

Figure 5. Input return loss¹

Figure 4. Input-to-output isolation¹

Figure 6. Output return loss¹

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other Keysight Technologies, Inc GaAs ICs, for their design should obtain the current production specifications from Keysight. In this data sheet the term typical refers to the 50th percentile performance. For additional information contact Keysight MMIC_Helpline@keysight.com.

Figure 7. Gain compression

Figure 8. Bonding pad locations

Three-Year Warranty

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/quality

Keysight Assurance Plans

Keysight Technologies, Inc. DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	0800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	0800 0260637

United Kingdom

For other unlisted countries: www.keysight.com/find/contactus (BP-07-01-14)

This information is subject to change without notice. © Keysight Technologies, 2013 - 2014 Published in USA, August 3, 2014 5989-6203EN www.keysight.com